Innovation for Our Energy Future

Solar Deployment Systems Model (SolarDS)

Modeling Solar Energy Use
6th RE Modeling Series
Walter Short
Paul Denholm
Nate Blair

December 6, 2004

Presentation Contents

Purpose

Status

Description of SolarDS Model

Challenges

Purpose of SolarDS

- Analyze the market penetration of photovoltaics (PV) on buildings in the U.S. under different policies and rate structures
- Capture the correlation between PV output and building loads in assessing the economic value and market penetration of PV
- Consider the competition with other distributed generation technologies from the building owner's perspective

Status of SolarDS

Alpha version should be completed this month

Key Features of SolarDS

- 2005 2050 in 5 year increments
- 11 regions (Contiguous Census regions + 2)
- 9 building types with variations on each type (45 total)
- Investment decision from building owner perspective
- 7 technologies grid only, battery only, PV, cogen
- Optimizes system size
- Each building type in each region characterized by 8760 electric/thermal loads and insolation

Key Features of SolarDS (Cont'd)

- Allows 4 types of rate structures flat, TOD, demand charge, tiered
- Calculates Net Present Cost of each technology/size option in each bldg type, each region, each period under specified rate structure.
- Distinguishes new vs. retrofit based on costs and financing
- Includes monetized values for reliability, environment, and risk
- Calculates market share using a price-based logit
- Tracks building and DG technology stock

SolarDS Regions

Building Types

- Residential
 - Single Family Homes
 - Apartment Buildings

- Commercial
 - Restaurant (2)
 - Supermarket
 - Retail
 - Hotel (2)
 - Prison
 - School
 - Hospital

Buildings vary by size, occupancy, shell characteristics, equipment characteristics

Data Inputs

- DOE-2 load data by building type and region developed by LBNL
- EIA Building Stock data
- EERE technology characterizations
- EIA AEO fuel and electricity prices

SolarDS Configuration

Sample Results: NPC of Electricity

Building Type: Small Apartment (~25 kW peak) - San Diego, CA Annual real electricity price increase of 0.5% with quasi-net metering (sell at 90%) No price risk or environmental factors.

Challenges

- Rate Structures
 - Key to economic viability of PV
 - Will they have the same structure in the future?
- Load data
 - Need corresponding insolation data
 - Prefer empirical data
 - Prefer consistency across buildings/regions
 - Prefer a larger set of buildings/regions

